direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C22.47C24, C10.1642+ 1+4, (D4×C20)⋊49C2, (C4×D4)⋊20C10, C4⋊D4⋊15C10, C42.C2⋊9C10, C42⋊2C2⋊6C10, C42.47(C2×C10), C42⋊C2⋊16C10, C20.324(C4○D4), (C4×C20).288C22, (C2×C10).373C24, (C2×C20).963C23, (D4×C10).221C22, C22.D4⋊11C10, C22.47(C23×C10), C23.19(C22×C10), C2.16(C5×2+ 1+4), (C22×C20).458C22, (C22×C10).102C23, (C10×C4⋊C4)⋊49C2, (C2×C4⋊C4)⋊22C10, C4.36(C5×C4○D4), (C5×C4⋊D4)⋊42C2, C4⋊C4.73(C2×C10), C2.26(C10×C4○D4), (C2×D4).34(C2×C10), C10.245(C2×C4○D4), (C5×C42.C2)⋊26C2, C22.11(C5×C4○D4), (C5×C42⋊C2)⋊37C2, (C5×C42⋊2C2)⋊17C2, C22⋊C4.23(C2×C10), (C5×C4⋊C4).399C22, (C22×C4).12(C2×C10), (C2×C4).62(C22×C10), (C2×C10).179(C4○D4), (C5×C22.D4)⋊30C2, (C5×C22⋊C4).155C22, SmallGroup(320,1555)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×C10 — C22×C10 — C5×C22⋊C4 — C5×C4⋊D4 — C5×C22.47C24 |
Generators and relations for C5×C22.47C24
G = < a,b,c,d,e,f,g | a5=b2=c2=d2=f2=1, e2=cb=bc, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, ede-1=bd=db, geg-1=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, fg=gf >
Subgroups: 362 in 238 conjugacy classes, 150 normal (62 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, C23, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C20, C20, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4⋊D4, C4⋊D4, C22.D4, C42.C2, C42⋊2C2, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22.47C24, C4×C20, C4×C20, C5×C22⋊C4, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C22×C20, C22×C20, D4×C10, D4×C10, C10×C4⋊C4, C5×C42⋊C2, D4×C20, D4×C20, C5×C4⋊D4, C5×C4⋊D4, C5×C22.D4, C5×C42.C2, C5×C42⋊2C2, C5×C22.47C24
Quotients: C1, C2, C22, C5, C23, C10, C4○D4, C24, C2×C10, C2×C4○D4, 2+ 1+4, C22×C10, C22.47C24, C5×C4○D4, C23×C10, C10×C4○D4, C5×2+ 1+4, C5×C22.47C24
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 156)(12 157)(13 158)(14 159)(15 160)(21 31)(22 32)(23 33)(24 34)(25 35)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)(76 86)(77 87)(78 88)(79 89)(80 90)(81 91)(82 92)(83 93)(84 94)(85 95)(96 106)(97 107)(98 108)(99 109)(100 110)(101 111)(102 112)(103 113)(104 114)(105 115)(116 126)(117 127)(118 128)(119 129)(120 130)(121 131)(122 132)(123 133)(124 134)(125 135)(136 146)(137 147)(138 148)(139 149)(140 150)(141 151)(142 152)(143 153)(144 154)(145 155)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 156)(7 157)(8 158)(9 159)(10 160)(11 16)(12 17)(13 18)(14 19)(15 20)(26 31)(27 32)(28 33)(29 34)(30 35)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 61)(57 62)(58 63)(59 64)(60 65)(66 71)(67 72)(68 73)(69 74)(70 75)(76 81)(77 82)(78 83)(79 84)(80 85)(86 91)(87 92)(88 93)(89 94)(90 95)(96 101)(97 102)(98 103)(99 104)(100 105)(106 111)(107 112)(108 113)(109 114)(110 115)(116 121)(117 122)(118 123)(119 124)(120 125)(126 131)(127 132)(128 133)(129 134)(130 135)(136 141)(137 142)(138 143)(139 144)(140 145)(146 151)(147 152)(148 153)(149 154)(150 155)
(1 136)(2 137)(3 138)(4 139)(5 140)(6 51)(7 52)(8 53)(9 54)(10 55)(11 36)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 141)(22 142)(23 143)(24 144)(25 145)(26 146)(27 147)(28 148)(29 149)(30 150)(31 151)(32 152)(33 153)(34 154)(35 155)(46 156)(47 157)(48 158)(49 159)(50 160)(56 101)(57 102)(58 103)(59 104)(60 105)(61 96)(62 97)(63 98)(64 99)(65 100)(66 111)(67 112)(68 113)(69 114)(70 115)(71 106)(72 107)(73 108)(74 109)(75 110)(76 131)(77 132)(78 133)(79 134)(80 135)(81 126)(82 127)(83 128)(84 129)(85 130)(86 121)(87 122)(88 123)(89 124)(90 125)(91 116)(92 117)(93 118)(94 119)(95 120)
(1 111 31 96)(2 112 32 97)(3 113 33 98)(4 114 34 99)(5 115 35 100)(6 81 11 86)(7 82 12 87)(8 83 13 88)(9 84 14 89)(10 85 15 90)(16 91 156 76)(17 92 157 77)(18 93 158 78)(19 94 159 79)(20 95 160 80)(21 106 26 101)(22 107 27 102)(23 108 28 103)(24 109 29 104)(25 110 30 105)(36 131 51 116)(37 132 52 117)(38 133 53 118)(39 134 54 119)(40 135 55 120)(41 126 46 121)(42 127 47 122)(43 128 48 123)(44 129 49 124)(45 130 50 125)(56 151 71 136)(57 152 72 137)(58 153 73 138)(59 154 74 139)(60 155 75 140)(61 146 66 141)(62 147 67 142)(63 148 68 143)(64 149 69 144)(65 150 70 145)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 121)(7 122)(8 123)(9 124)(10 125)(11 126)(12 127)(13 128)(14 129)(15 130)(16 131)(17 132)(18 133)(19 134)(20 135)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(51 91)(52 92)(53 93)(54 94)(55 95)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
(1 46 26 36)(2 47 27 37)(3 48 28 38)(4 49 29 39)(5 50 30 40)(6 151 16 141)(7 152 17 142)(8 153 18 143)(9 154 19 144)(10 155 20 145)(11 136 156 146)(12 137 157 147)(13 138 158 148)(14 139 159 149)(15 140 160 150)(21 51 31 41)(22 52 32 42)(23 53 33 43)(24 54 34 44)(25 55 35 45)(56 86 66 76)(57 87 67 77)(58 88 68 78)(59 89 69 79)(60 90 70 80)(61 91 71 81)(62 92 72 82)(63 93 73 83)(64 94 74 84)(65 95 75 85)(96 116 106 126)(97 117 107 127)(98 118 108 128)(99 119 109 129)(100 120 110 130)(101 121 111 131)(102 122 112 132)(103 123 113 133)(104 124 114 134)(105 125 115 135)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)(76,86)(77,87)(78,88)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(96,106)(97,107)(98,108)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(116,126)(117,127)(118,128)(119,129)(120,130)(121,131)(122,132)(123,133)(124,134)(125,135)(136,146)(137,147)(138,148)(139,149)(140,150)(141,151)(142,152)(143,153)(144,154)(145,155), (1,21)(2,22)(3,23)(4,24)(5,25)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75)(76,81)(77,82)(78,83)(79,84)(80,85)(86,91)(87,92)(88,93)(89,94)(90,95)(96,101)(97,102)(98,103)(99,104)(100,105)(106,111)(107,112)(108,113)(109,114)(110,115)(116,121)(117,122)(118,123)(119,124)(120,125)(126,131)(127,132)(128,133)(129,134)(130,135)(136,141)(137,142)(138,143)(139,144)(140,145)(146,151)(147,152)(148,153)(149,154)(150,155), (1,136)(2,137)(3,138)(4,139)(5,140)(6,51)(7,52)(8,53)(9,54)(10,55)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,141)(22,142)(23,143)(24,144)(25,145)(26,146)(27,147)(28,148)(29,149)(30,150)(31,151)(32,152)(33,153)(34,154)(35,155)(46,156)(47,157)(48,158)(49,159)(50,160)(56,101)(57,102)(58,103)(59,104)(60,105)(61,96)(62,97)(63,98)(64,99)(65,100)(66,111)(67,112)(68,113)(69,114)(70,115)(71,106)(72,107)(73,108)(74,109)(75,110)(76,131)(77,132)(78,133)(79,134)(80,135)(81,126)(82,127)(83,128)(84,129)(85,130)(86,121)(87,122)(88,123)(89,124)(90,125)(91,116)(92,117)(93,118)(94,119)(95,120), (1,111,31,96)(2,112,32,97)(3,113,33,98)(4,114,34,99)(5,115,35,100)(6,81,11,86)(7,82,12,87)(8,83,13,88)(9,84,14,89)(10,85,15,90)(16,91,156,76)(17,92,157,77)(18,93,158,78)(19,94,159,79)(20,95,160,80)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(36,131,51,116)(37,132,52,117)(38,133,53,118)(39,134,54,119)(40,135,55,120)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(56,151,71,136)(57,152,72,137)(58,153,73,138)(59,154,74,139)(60,155,75,140)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145), (1,56)(2,57)(3,58)(4,59)(5,60)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,127)(13,128)(14,129)(15,130)(16,131)(17,132)(18,133)(19,134)(20,135)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,86,66,76)(57,87,67,77)(58,88,68,78)(59,89,69,79)(60,90,70,80)(61,91,71,81)(62,92,72,82)(63,93,73,83)(64,94,74,84)(65,95,75,85)(96,116,106,126)(97,117,107,127)(98,118,108,128)(99,119,109,129)(100,120,110,130)(101,121,111,131)(102,122,112,132)(103,123,113,133)(104,124,114,134)(105,125,115,135)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,156)(12,157)(13,158)(14,159)(15,160)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)(76,86)(77,87)(78,88)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(96,106)(97,107)(98,108)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(116,126)(117,127)(118,128)(119,129)(120,130)(121,131)(122,132)(123,133)(124,134)(125,135)(136,146)(137,147)(138,148)(139,149)(140,150)(141,151)(142,152)(143,153)(144,154)(145,155), (1,21)(2,22)(3,23)(4,24)(5,25)(6,156)(7,157)(8,158)(9,159)(10,160)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75)(76,81)(77,82)(78,83)(79,84)(80,85)(86,91)(87,92)(88,93)(89,94)(90,95)(96,101)(97,102)(98,103)(99,104)(100,105)(106,111)(107,112)(108,113)(109,114)(110,115)(116,121)(117,122)(118,123)(119,124)(120,125)(126,131)(127,132)(128,133)(129,134)(130,135)(136,141)(137,142)(138,143)(139,144)(140,145)(146,151)(147,152)(148,153)(149,154)(150,155), (1,136)(2,137)(3,138)(4,139)(5,140)(6,51)(7,52)(8,53)(9,54)(10,55)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,141)(22,142)(23,143)(24,144)(25,145)(26,146)(27,147)(28,148)(29,149)(30,150)(31,151)(32,152)(33,153)(34,154)(35,155)(46,156)(47,157)(48,158)(49,159)(50,160)(56,101)(57,102)(58,103)(59,104)(60,105)(61,96)(62,97)(63,98)(64,99)(65,100)(66,111)(67,112)(68,113)(69,114)(70,115)(71,106)(72,107)(73,108)(74,109)(75,110)(76,131)(77,132)(78,133)(79,134)(80,135)(81,126)(82,127)(83,128)(84,129)(85,130)(86,121)(87,122)(88,123)(89,124)(90,125)(91,116)(92,117)(93,118)(94,119)(95,120), (1,111,31,96)(2,112,32,97)(3,113,33,98)(4,114,34,99)(5,115,35,100)(6,81,11,86)(7,82,12,87)(8,83,13,88)(9,84,14,89)(10,85,15,90)(16,91,156,76)(17,92,157,77)(18,93,158,78)(19,94,159,79)(20,95,160,80)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(36,131,51,116)(37,132,52,117)(38,133,53,118)(39,134,54,119)(40,135,55,120)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(56,151,71,136)(57,152,72,137)(58,153,73,138)(59,154,74,139)(60,155,75,140)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145), (1,56)(2,57)(3,58)(4,59)(5,60)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,127)(13,128)(14,129)(15,130)(16,131)(17,132)(18,133)(19,134)(20,135)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,86,66,76)(57,87,67,77)(58,88,68,78)(59,89,69,79)(60,90,70,80)(61,91,71,81)(62,92,72,82)(63,93,73,83)(64,94,74,84)(65,95,75,85)(96,116,106,126)(97,117,107,127)(98,118,108,128)(99,119,109,129)(100,120,110,130)(101,121,111,131)(102,122,112,132)(103,123,113,133)(104,124,114,134)(105,125,115,135) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,156),(12,157),(13,158),(14,159),(15,160),(21,31),(22,32),(23,33),(24,34),(25,35),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75),(76,86),(77,87),(78,88),(79,89),(80,90),(81,91),(82,92),(83,93),(84,94),(85,95),(96,106),(97,107),(98,108),(99,109),(100,110),(101,111),(102,112),(103,113),(104,114),(105,115),(116,126),(117,127),(118,128),(119,129),(120,130),(121,131),(122,132),(123,133),(124,134),(125,135),(136,146),(137,147),(138,148),(139,149),(140,150),(141,151),(142,152),(143,153),(144,154),(145,155)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,156),(7,157),(8,158),(9,159),(10,160),(11,16),(12,17),(13,18),(14,19),(15,20),(26,31),(27,32),(28,33),(29,34),(30,35),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,61),(57,62),(58,63),(59,64),(60,65),(66,71),(67,72),(68,73),(69,74),(70,75),(76,81),(77,82),(78,83),(79,84),(80,85),(86,91),(87,92),(88,93),(89,94),(90,95),(96,101),(97,102),(98,103),(99,104),(100,105),(106,111),(107,112),(108,113),(109,114),(110,115),(116,121),(117,122),(118,123),(119,124),(120,125),(126,131),(127,132),(128,133),(129,134),(130,135),(136,141),(137,142),(138,143),(139,144),(140,145),(146,151),(147,152),(148,153),(149,154),(150,155)], [(1,136),(2,137),(3,138),(4,139),(5,140),(6,51),(7,52),(8,53),(9,54),(10,55),(11,36),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,141),(22,142),(23,143),(24,144),(25,145),(26,146),(27,147),(28,148),(29,149),(30,150),(31,151),(32,152),(33,153),(34,154),(35,155),(46,156),(47,157),(48,158),(49,159),(50,160),(56,101),(57,102),(58,103),(59,104),(60,105),(61,96),(62,97),(63,98),(64,99),(65,100),(66,111),(67,112),(68,113),(69,114),(70,115),(71,106),(72,107),(73,108),(74,109),(75,110),(76,131),(77,132),(78,133),(79,134),(80,135),(81,126),(82,127),(83,128),(84,129),(85,130),(86,121),(87,122),(88,123),(89,124),(90,125),(91,116),(92,117),(93,118),(94,119),(95,120)], [(1,111,31,96),(2,112,32,97),(3,113,33,98),(4,114,34,99),(5,115,35,100),(6,81,11,86),(7,82,12,87),(8,83,13,88),(9,84,14,89),(10,85,15,90),(16,91,156,76),(17,92,157,77),(18,93,158,78),(19,94,159,79),(20,95,160,80),(21,106,26,101),(22,107,27,102),(23,108,28,103),(24,109,29,104),(25,110,30,105),(36,131,51,116),(37,132,52,117),(38,133,53,118),(39,134,54,119),(40,135,55,120),(41,126,46,121),(42,127,47,122),(43,128,48,123),(44,129,49,124),(45,130,50,125),(56,151,71,136),(57,152,72,137),(58,153,73,138),(59,154,74,139),(60,155,75,140),(61,146,66,141),(62,147,67,142),(63,148,68,143),(64,149,69,144),(65,150,70,145)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,121),(7,122),(8,123),(9,124),(10,125),(11,126),(12,127),(13,128),(14,129),(15,130),(16,131),(17,132),(18,133),(19,134),(20,135),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(51,91),(52,92),(53,93),(54,94),(55,95),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)], [(1,46,26,36),(2,47,27,37),(3,48,28,38),(4,49,29,39),(5,50,30,40),(6,151,16,141),(7,152,17,142),(8,153,18,143),(9,154,19,144),(10,155,20,145),(11,136,156,146),(12,137,157,147),(13,138,158,148),(14,139,159,149),(15,140,160,150),(21,51,31,41),(22,52,32,42),(23,53,33,43),(24,54,34,44),(25,55,35,45),(56,86,66,76),(57,87,67,77),(58,88,68,78),(59,89,69,79),(60,90,70,80),(61,91,71,81),(62,92,72,82),(63,93,73,83),(64,94,74,84),(65,95,75,85),(96,116,106,126),(97,117,107,127),(98,118,108,128),(99,119,109,129),(100,120,110,130),(101,121,111,131),(102,122,112,132),(103,123,113,133),(104,124,114,134),(105,125,115,135)]])
125 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | ··· | 4J | 4K | ··· | 4P | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 10M | ··· | 10T | 10U | ··· | 10AF | 20A | ··· | 20AN | 20AO | ··· | 20BL |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
125 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | C10 | C10 | C4○D4 | C4○D4 | C5×C4○D4 | C5×C4○D4 | 2+ 1+4 | C5×2+ 1+4 |
kernel | C5×C22.47C24 | C10×C4⋊C4 | C5×C42⋊C2 | D4×C20 | C5×C4⋊D4 | C5×C22.D4 | C5×C42.C2 | C5×C42⋊2C2 | C22.47C24 | C2×C4⋊C4 | C42⋊C2 | C4×D4 | C4⋊D4 | C22.D4 | C42.C2 | C42⋊2C2 | C20 | C2×C10 | C4 | C22 | C10 | C2 |
# reps | 1 | 1 | 1 | 4 | 4 | 2 | 1 | 2 | 4 | 4 | 4 | 16 | 16 | 8 | 4 | 8 | 4 | 4 | 16 | 16 | 1 | 4 |
Matrix representation of C5×C22.47C24 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 10 | 0 |
0 | 0 | 0 | 10 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 32 | 0 | 0 |
9 | 0 | 0 | 0 |
0 | 0 | 32 | 18 |
0 | 0 | 32 | 9 |
32 | 0 | 0 | 0 |
0 | 32 | 0 | 0 |
0 | 0 | 32 | 18 |
0 | 0 | 0 | 9 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 1 | 39 |
0 | 0 | 1 | 40 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,10,0,0,0,0,10],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[0,9,0,0,32,0,0,0,0,0,32,32,0,0,18,9],[32,0,0,0,0,32,0,0,0,0,32,0,0,0,18,9],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,1,1,0,0,39,40] >;
C5×C22.47C24 in GAP, Magma, Sage, TeX
C_5\times C_2^2._{47}C_2^4
% in TeX
G:=Group("C5xC2^2.47C2^4");
// GroupNames label
G:=SmallGroup(320,1555);
// by ID
G=gap.SmallGroup(320,1555);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,1688,3446,1242,304]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=f^2=1,e^2=c*b=b*c,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*d*e^-1=b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,f*g=g*f>;
// generators/relations